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In the pa ers [l to 41 it is shown that In the case when the relative thlck- 
ness (97 of a circular plate is small, its behavior is slmllar to that of 
a membrane (0 = 01 everywhere, except in a narrow portion near the bound- 
ary, where the “boundary layer’ phenomenon takes place. However, similar 
phenomena may originate not only on the edge of the plate but also in the 
interior of it. In the present paper, with the aid of asymptotic methods 
developed for a symmetrically loaded circular plate In [3 and 41, It Is 
established that an interior boundary layer [5] exists, If the loading is 
discontinuous In character. With the above In mind, asymptotic representa- 
tions of solutions of problems are constructed and justified for evaluation 
of circular plates under the action of discontinuous loadings. This Is Illus- 
trated by an example problem of a symmetically loaded circular Plate which 
is under the action of a loading uniformly distributed along a certain cir- 
cumference. 

1. The system of von K&m&n equations for the case of a symmetrically 

loaded circular plate, rigidly fixed along the edge, has the form 

A.o_g= 0, eaAu + UZJ + cp (p) = 0 

A (...) s -p+ -$$P(...), dw 
U=dp 

(1.1) 

u=o, “-+ 
*p v=O for p=i; $<m, $<oo for p=O (1.2) 

All the quantl.ties, entering Equations (1.1) and (1.2), are dimensionless, 

in which WI. is the deflection of the middle surface of the plate, VE/P 

ii3 the radial stress, E is the Young’s modulus, h is the plate thickness, 

a is the exterior radius, and q(c) Is the Intensity of the normal loading. 
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In addition, It Is assumed that the function cp(p) and Its derivatives 

to the n+2 order are plecewlse continuous. witnouf loss of generality, 

we assume that g(p) has a unique jump at the point p = b > 0 , i.e. 

? lb - 0) # cp P + 0) 
With these assumptions the following theorem can be formulated, using[6]. 

Theorem 1.1 The problem (l.l), (1.2) has unique solutions 

(a,u) * The function u Is nonnegative and twice continuously dlfferentl- 

able. The function L( has continuous firat and plecewlse continuous second 

derivatives (flnlte Jump at the point P = b) 

2. For the solution of (l.l), (1.2) the following asymptotic representa- 

tions are constructed: 
n+!2 n+2 *+a 

2, = $zO a8vs + $zc 8% + x & -I- xn 
s=c 

(2.1) 

U = i ES& + i ESg, + i EsQ + 2, 
s=o s=o S=O 

The construction of the functions v,, u, and h,, 0, Is given In detail 

In ES]. To determine vc, uc we had the system (membrane equations) 

Au, - ‘12uoz = 0 9 uovo + cp (PI = 0 (2.2) 
with boundary pondltlons 

dVC c -__ 
4’ P 

vo = 0 for p = 1, $-<"o for p=O (2.3) 

and for the determination of v,, u, there is the system 

Au, - ‘1% z: ukuj = 0, 
k+j=s 

x UkVj$AW_~=O 
k+j=s 

(s=l,Z,...,n-12; u_l=o) 

with the boundary conditions 

(2.4) 

$<W dv, 
for p=O, ~-+Vs=B” for P=l (2.5) 

here B, are found by equating to zero the coefficients of c' In Expres- 

sion ?L+c 

2 [ 
for p=l 

S=o 
es &+$-+h8] =0 

Functions of the boundary layer type h,, Q,, which compensate for the 

mismatch of the functions satisfying the boundary conditions (1.2), are de- 
fined from the dlfferentlal equations with constant coefficients 

dab, 
-- 

dt2 - 
0 (i = 0, 1) (2.6) 
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- r] t’ (I - t). g&n -?- 2 t’ (1 
j-/-m=8 k+m+Z=s 

with boundary conditions 

R,(...)G2td*+y, R, (...) 5 - t@y- t* + (...) 

l=O I=0 

v,(p) and u*(p) are the expansions in Taylor’s series at the point p = I. 

But in [I to 4”j the fnvestigktlons were conducted for the o%se of suffi- 

ciently smooth loadings q(p) . As Is evident from (1,3), here this condi- 

tion is violated. We will show that the discontinuity of p(p) at the Point 

p = b produces in the neighborhood of this poZnt the Phenomenon of the 

inter&or boundary layer [5]. Two theorems are necessary in what follows. 

Theorem 2.1. The problem (2.2), (2.3) has unique solutions 

(+ 740) l 
The function uO and its first derivative are continuous and the 

es timate 1 z 

is valid. 

All the following derivatives of the function wg , and llkew~tle the func- 

tlon 24, and its first drivative %re piecewise continuous (they have finite 

jumps at the .point p = a) 

The proof of the theorem almost literally coincides with the proof of 

Theorem 2.2 In 171. It thereby becomes obvious that vg appears %a the limit 

of the sequence determined by the relations 

Vn+l = Vn - 6, (n = 1,2,. .a ) 

where b, Is the solution of Equation 
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$ A6, $- M6, - a,, = 0, <w, 
a 

a,=$Av,-- 2p:ns ’ M=max -$ 
I I (04P<i1) 

Theorem 2.2. Problem (2.41, (2.3) has a unique solution u,,~, 

(8 = 1, 2, . ..) . The function U, and its flrdt derivative are continuous, 
while the higher derivatives of u, , and also the function u, together 

with its derlvatives*are plecewlse continuous (they have finite jumps at the 

point p =b) . 

Theorem 2.2 follows as a consequence of theorem 4 from [4] and theorem 

2.1 of the present paper. 

Applying Theorems 1.1, 2.1 and 2.2,‘we note that the differences 

?I+2 
U" = U - 2 ES (v, + h,), ul' = u - i: ES (US + gJ 

S=O .S=ll 

and their derivatives have finite jumps at the point p = b . Indeed, while 

the function u(p) is continuously differentiable at the point p = b , the 

fUmtiOns U,(p) (8 = 0,1,... ) together with their derivatives are disconti- 

nuous at this point. Further, the differences vu and u' in the neighbor- 

hood of p = b have the character of a boundary layer. In order to find 

this character we Introduce the functions 5, and Q which are sought In 

the form 

Vn = fj eiEki, 

R 

u* := x &fQ (k=l, 2) (2.10) 

Here 
i=O i=o 

ti = Eli, Iii = rllt for p<b, Er = tzi, qt = rlzi for p >b 

We let further, P= lb-p1 and 

vk = vk, $ )'&r -,- . . . + vk,,rn, uk = uko t r&r + . . . $- uknr” (2.11) 

which are the corresponding expansions ln Tay!.or's series at the point T= 0. 

Now we substitute (2.10) and (2.11) into (l.l), and perform the substitution 

r = et and equate to zero the coefficients of 60, e',...e". We obtain the 

system (2.6) to (2.8) and (2.11) for the determination of $r, and Q, with 

the substitutions h, by tr,, (Ia by qkr and v,(l) by u,(a) . Theunknown 

boundary conditions at t = 0 for qk, (k = 1, 2) remain unknown. Applying 

Theorems 1.1, 2.1 and 2.2 we conclude that the missing boundary conditions 

are determined from the requirement that the sum 

(z&J $_rlo) + 6 ($ + %) + - - * + E” bn + %I) 

must be continuous together with Its derivative. Then, If we Introduce the 

notation 
[F] = F (b + 0) -p VJ --0) (2.12) 

the condition of continuity can be written as 

IU, + %I = [$ (% + %)I= 0 (s=O, 1,. . .) n) i(2.13) 
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Further, from (2.6) we obtain that pO= fl= 0 Thds corresponds to the 

condition that the difference v - v0 and its first derivative are continuous 

at the point p = 23 . 

Now from (2.7) for s 5 0 we obtain 

daqko 

- - 1;, @I rtk, = 0, dt2 q*, li,l,w = 0 (k=f, 2) (2.14) 

Hence we find that 

rlo = Cl ew (- Jf2ZG y) 
-- 

q. = C, exp (- Vvo (4 q) 

for p<b 

for p >fJ 

(2.15) 

IKn order to determine the constants Ck we substitute (2.15) into (2.13) 

for s = 0 and we obtain a system of two linear algebraic equations for C, 

and C, . Solving this system we find 

Cl = (2.16) 

The fUnCtiOnS TJ, (8 = 1, 2, . . .) are determined in an analogous form from 

the equations of the form (2.14), but being no~omogeneous, and the fUICtiOnS 

E& are determined from Formulas (2.7) by repeated integrations. It is not 

difficult to see that the functions f, and n, are functions of the boundary 

layer type [: 53. 

3. For the foundations of the asymptotic representations we proceed from 

the following Lemma. 

L e m m a 3.1 . Let mr= u - xr and liik= u - s* . Then in each inter- 
val LO, ?YJ and [b, 11 the estimates 

am? valid, 

This lemma follows from Lemma 3 of (ii], applied separately -Ln the inter- 

vals [O, b] and [b, l] . 

Lemma 3.2. For sufficiently small e (O< a < g,)for all 

p E 10, 11 the following relations are valid: 

$1 vk>*O, 2, min g>$* T==?&(l)>0 (3.2) 
The inequalities (3.2) are easily obtained as a consequence of Lemma 5 of 

[4], Theorem 2.1, and (2.6), (2.9). 

L e mm a 3.3 . For xl, and sk the foLlowing energy estimation ia 

valid: 
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We begin from considering the Interval [0, 

(1.1) and multiply the first difference by (V 

(U - S,)/P ) and integrate from 0 to 1 and sum 

bl . We substlact (3.1) from 

- cpr ‘VP 3 and the second by 

the results. We perform an 

analogous operation in the Interval [a, l] and the result obtained is added 

to the previous one. The result of these operations Is 

Let us show that the nonintegrated terms appearing In the square brackets 

are equal to Zero. Obviously, that for this to be true It is necessary to 

demonstrate that .rr and st are continuous together with their first derlva- 

tlves at the point c = b . For the function z,(p) this follows from the 

smoothness of u(p) by virtue of Theorem 1.1 and the smoothness of z~(P) by 

virtue of conditions (2,13). For the function s,(p) this follows from the 

smoothness of v(p) and U, (p) (a = O,l,...) by virtue of Theorems 1.1, 2.1 

and 2.2 and the fact that the 5, are obtained by the double integration of 

expressions having possible finite j mps at the point p = b . So, the 

expressions In the square brackets aretequal to zero, and the inequality 

(3.3) follows from (3.4) with the aid of Theorem 1.1, Lemma 3.2 and the sim- 

ple inequality 1 I 

Theorem 3.i . Let the function q(p) satisfy condition (1.3) and 

for each of the Intervals [0, b] and [b, 11 it has n+ 2 continuous derl- 

vatlves, Then the asymptotic representation (2.1) holds, in which, the esti- 

mated remainder allowed Is 

max, I xn (p) I < m1@L+1 (n 2 o), maxP 1 zn (p) 1 < m2.9+‘/r (n 2 0) 

%I 
maxp + 

i I 
- < rn@+l b > W (n -> 2) (3.5) 

d2x, 
max, dp” I I 

< qen-‘f* (n 2 I), max 

d%, 

I I Pdpz 
< mge”-2 (n > 3) 

(0 < P < 1) 

4. In the case of other boundary conditions, for Instance, free clamping 
or simply supporting the 
be of the form (2.14) to 

rlnclpal 
2.16). 

term of the Interior boundary layer will 
Whereby, the exponential character of the 

boundary layer can be explained by the fact that the radial force in the 
Interior points of the membrane Is positive (see Lemma 1 of [4]). If, how- 
ever, one can construct the following approximations of the degenerate prob- 
lem analogous to (2.4), (2.5), then the subsequent asymptotic representation 
can be constructed with the aid of the equatlons of the form (2.6) and (2.7). 
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5. Example Let a circular plate rigidly fixed along 
be under the action of's symmetrical loading of intensity p 

the contour 

distributed along some circumference of radius b > 0 . 
uniformly 

(The'problem is 
zorm;l;ted In cl 

a/h =: 
, page 168). To further define the problem we let ba= 0.5, 
.704, and Q = (a/Eh)p . 

Then'the equilibrium state of the plate Is described by equations (1.1) 
and (1.2) In which 

cp (P) = 0 for o<p<b, cp (p) = qb foi b< p< 1 (5.1) 

Without loss of generality It can be assumed that 

CP (P) = 0 for 0 < P <b, V(P) = 1 for b < p 6 1 (5.2) 

since the problem (l.l), (1.2), (5.1) reduces the problem (l.l), (1.2), (5.2) 
with the simple substitutions 

v = CY (qb)%, u = p (qb)*‘*, El 2 = 82 (qb)-‘h (5.3) 

It is not difficult to calculate that the relative thickness of the plate 
c = 0.035, and therefore, the solution of the problem can be constructed with 
the aid of the asymptotic representation (2.1). 

The fundamental difficulty in the construction of the asymptotic represen- 
tation Is the solution of the problem (2.2), (2.3). This problem could be 
solved by making use of the .algorlthms given In Theorem 2.1. But In the case 
of the function q(p) specified in Formulas (5.2), it Is more convenient to 
take advanta e of the method of power series. 
u0 from (2.27, ( 1 

For this purpose we eliminate 
2.3 and perform the substitutions 

PO = PUOV p2=1-z (5.4) 

Making use of (5.2) the results are 

- 8poa dapo / dx2 - 1 = 0 for 0 < x \i b= (5.5) 

dap01dx2 = 0 for ba < x < 1 (5.6) 

Pa Ix+ = 0, [2’dp,ld~ -I- (f -i- 4 PoI,, = 0 (5.7) 

The solution of problem (5.5) to (5.7) In the Interval CO, ba] is approxl- 
mated by a segment of the power series 

P,(x) = aof al" + . . . + a,x" (n = 2, 3,...) (5.8) 

In order to determine the constants a, we substitute (5.8) Into (5.5) 
and Into the second boundary condition of (5.7) and then we eauate to zero 
the coefficients with various powers of x . The resulting 

1+a 1 
al=-- 2 a09 al=-- 16ao2 

1 
u, = - 

s(s-11)uoa t (t - 1) u/&$2, 
k+m+t=s+a 
(m2, t#e) 

relations are 

(5.9) 

(5.10) 

From (5.9) and (5.10) we find 

u* = - .$ [“fgJ bk(B) (d,” (s = 3, 4, 5, . * .) (5.li) 

Here the bc) are completely determined numbers for for a given value a. 
E;li;;le below gives several values of bk@) for a = 0.3, employed in what 

. 
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-bfp IO’ 0.66666 0.4 0.256 0.17066 0.11702 0.13457 0.13516 
-b1@) 102 O-52083 0.91666 1.1333 1.2114 1.19768 1.09453 
--bP 103 0.47742 1.4484 2.72318 3.36034 
-bs@) IO’ 0.56577 2.12603 

r=3 84 I a=5 
I 

s=6 
I 

s=7 
I 

84 8=9 

From (5-11) It follows that in order to determlne the values of a,+t is 
necessary to find a *. We note first that the solutlon of problem (5.5) to 
(5.7) in the interval [ ba , l] has the form 

po = c (1 - 2) (V < x < 1) (5.12) 

Here C is a certain constant. In order to find the constant C and 
together with it a0 , we take advantage of Theorem 2.1 concerning the con- 
ti,nulty of the function u and Its first derivative. This, together with 
(5.8) and (5.12) leads to ‘the following relations at the point x = b’: 

aebas = C (1 - b2), (5.13) 
a=0 a=0 

Ellmiriating C we deduce from (5.13) 
n 

2 a,ba (*-l)(bz + s (1 - by) = 0 (5.14) 
s-0 

Applying (5.11), we obtain from (5.14) 
with respect to t = ad : 

the following algebraic equation 

f, (2). = P + cpl t_ . . . Q cm_1z + cm = 0 (z = a,“) (5.15) 

Now If In (5.8) we take the value n = 2(k + l), then the order of Equa- 
tion (5.15) will be equal to k 

In order to select amongst the roots , (t) the necessary root, we 
observe that aO= u 
unique positive roo ? 

(1) > 0 (see Theorem . ‘But Equation (5.15) has a 
. !Chls follows from the fact, that all c, (t=1,2,..,m) 

are negative according (5.11), Eind then uniqueness follows from Descartes 
theorem concernlrg the number of positive roots of a polynomial. We note 
that the positive root of Equation J’,.(E) = 0 is conveniently found by 
Newton’s method, in which the Initial approximation Is taken equal to the 
upper bound of the positive roots of the polynomial determined according to 

the Maclaurln method, I.e. 

2, = 1 + maxi I cf I (1 \(. i < m) 

Finally, having a, determined, we 
find the a, (s = 1, 2, . . .) according 
to Formulas (5.9), (5.11), and the con- 
stant C is found from any of Formulas 
(5.13). With the method described above 
for the values o = 0.3 and ba = 0.5 
the approximate solution of the problem 
(2.2), (2.3), (5.2) was obtained.. For 
the approximation of p0 the polynomials 
p, and pp were constructed (see (5.8)). 
With this it is useful to note the satis- 
faction of the Inequality 

max, 1 P7 (4 - PO (2) ] < 0.002 

(0 4 x < l/2) (5.16) Fig.1 



Now, applying (5.4) and relations (2.2), we compute the displacements Ug, 
U‘o * The deflection of points of the middle surface of the membrane are 
found from Formula P 

The graphs of the functions vO, u0 and or, are represented, respectively, 

Fig. 2 Fig. 4 

in Figs. I, 2 and 3 and marked with number 1. We note that the graph of 
U, has a dlSGontinUlt at the point p 5 b where 
Further, from (2.6), 92.7) for 8 = 0 ‘We find 

u*(p) = 0 forO<pp<* 

to (2.16) we determined no . 
(2.4) and (2.5) we obtain 

For the determlna%o~~f "E: %i "'up: !E$4J 

(5.49) 

The solution of problem (5.18), (5.19) can be obtained by a method analo- 
gous to Lhe previous exponential series method. 

In (5,18).and (5.19) it is necessary to perform the substitutions of the 
form (5.4) and to seek the solution of the problem in the Interval [O, ba] 
In the form of (5.8), and In the Interval [ba, I] In the form c,(l - x). 

The constant c, Is determlned from the GondltiOn of the continuity of 
u,, together with its derivative, according to Theorem 2.2. The value ad 
is found as the solution of the linear algebraic equation. 
the functions VO +sU1, mg+sut,wa + Ewl 

The graphs of 

2 and 3, and are marked with the number 2. 
are also represented in Figs. 1, 

Let us turn to the evaluation of (cp Jr1 ) which Is the approximate solu- 
tion of the problem (l.l), (1.2), (5.2j'wlth the consideration of terms of 
order c . For this we find glr n1 for s = I , from (2.6) and (2.7), and 
we substitute these and the previously calculated values of the functions 

etc. into (2.1). The value of the deflectSon we shall find accord- 
?%g %'F%mula (5.17), but with the substitution of U,,'by $ The approx- 
imate solution of the problem is represented In the graphs ln'Figs.2, 3 and 
4 and marked with the number 3. 
colncldes with u0 + sv, 

We note that In Fig.2 the quantity c+, 
and is correct up to values of the order e*; f, Is 
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a continuous function, changing rapidly in the neighborhood of the points 
p=b and p = 1 . 

Finally, we calculate the bending moment arising In a plate. We have 

EhS 
D = 12(1-a2) (O<r<ea) (5.20) 

Passlng over to dimensionless variables we obtain 

M 
MO=---= 

In Flg.4, the raphlc representation of the function M,- M X 10' (marked 
with the number 3 Is given. It Is Interesting to note, that In the membrane 
the bending moments are equal to zero (In Fig.4 this Is a straight line coin: 
cidlng with the abscissa axis and marked with the number l), and the extreme 
values of M, are found at points P=b,and p=l. 

The author thanks'I.1. Vorovlch and 'V.I. Iudovlch for the useful advice 
In carrying out this paper. 
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