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In the papers [1 to 4] it 1s shown that in the case when the relative thick-
ness (ezg of a circular plate 1s small, its behavior is similar to that of
a membrane (e = 0) everywhere, except in a narrow portion near the bound-
ary, where the "boundary layer" phenomenon takes place. However, simllar
phenomena may originate not only on the edge of the plate but also in the
interior of it. In the present paper, with the ald of asymptotic methods
developed for a symmetrically loaded circular plate in [3 and %], 1t is
established that an interior boundary layer [5] exists, if the loading is
discontinuous in character. With the above 1n mind, asymptotic representa-
tions of solutions of problems are constructed and Justifled for evaluation
of circular plates under the actlion of discontinuous loadings. This is 1llus-
trated by an example problem of a symmetlcally loaded circular plate which
is under the action of a loading uniformly dilstributed along a certain cir-
cumference.

1. The system of von Kdrmén equations for the case of a symmetrically
loaded circular plate, rigidly flxed along the edge, has the form

A'zz—-%si =0, edu+uv+o9 (@) =0 (1.1)
d 1 d dw
A(.)E—pg};?%‘p(..), u:%—
)
&= (1'}1—262)::2 (0<°<_§')’ q’(p)z_f;TSQ(t)tdt
o
dv [+]

u=0, d—p'—TU—‘:O for p=1; %<°°; —;‘<°° for p=0 (1.2)

All the quantities, entering Equations {1.1) and (1.2), are dimensionless,
in which pg 1s the deflection of the middle surface of the plate, vgyb
is the radial stress, £ 1s the Young's modulus, h 1s the plate thickness,
@ 18 the exterior radius, and ¢(p) 1s the intensity of the normal loading.
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In addition, 1t is assumed that the function o{p) and its derivatives
to the n+ 2 order are plecewlse continuous. WitHout loss of generality,
we assume that ¢(p) has a unique Jump at the point p = 2> 0, 1,e.

¢ @®—0) ¢+ 0) (1.3)
With these assumptions the following theorem can be formulated, using [6].

Theorem 1,1 The problem (1.1), (1.2) has unigue solutions
(v,u) . The function » 18 nonnegative and twice continuously differenti-
able. The function y has continuous first and plecewise continuous second
derivatives (finlte jump at the point p = 3)

2. For the solution of (1.1), (1.2) the following asymptotic representa-—
tions are constructed:

n+2 n+2 n+2
v = 2 &% + 2 8shs + 2 3s§s _|‘ Zn
5=0 s==0 8=0

2.1)
w= D eus + ) &% + 0 &M+ zp
8§=0

§=0 §==0
The construction of the functions v,, u, and h,, ¢, is given in detall
in [4]. To determine v,, u, we had the system (membrane equations)
Avy — Yug = 0, ug% + ¢ (p) =0 (2.2)
with boundary conditions

dvp ] Yo

T =0 re=t, P<m fwp—0 (23)
and for the determination of v,, y, there 1s the system
Avs - 1/2 2 ukuj = 09 2 Urv; + Aus—2 = O (2‘4)
k4j=s ktj=s

(s=1,2,...,n+2 u_1:0)

with the boundary conditions\

vy dvg s
?<°° for p=0, dp ——Tvs::Bs for p=1 (2.5)
Here 5B, are found by equating to zero the coefficlents of ¢' in Expres-
sion
Se (Bt G —2h ] =0
e —_— —— = —
2=0 ) dp p ° for p=1

Functions of the boundary layer type h,, ¢,, Which compensate for the
mismatch of the functions satisfying the boundary conditions (1.2), are de-
fined from the differential equatlons with constant coefficlents

d2h;

- = 0 (i=0,1) (2.6)
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d2h,
‘Q}‘zﬁ‘ = Ryhsyy + Rohy — 2 ¢l —t)ung — 5 Z -t gg; (2.7)
Rjti=s ‘+J=5
d%g,.
i VoBs = Rigsy + Rofsn+ 2 (1 — t) vpgs—
k?éié?’
- 2 Zz (1 - z) gjkm + Z tl (i — t) lém}?m
jm=8 kfmpl=s
with boundary conditions
gs lt==0 = — R, gs ftxeo = 0: ;28 Itgoa =0 (2.8}
Here
—_ d (... d d
Ri()=a5id 4+ 2, Rg=—efh) o d) )

7

1
1 3
ga=g1=0, vgp=-—m Sngm“’,dgdn>o, s=0,1,....n
! o ﬂivo ’

]

vk = D\ n @ —p), ue = 3 wg (1 — p)’
=0 =0

v, {p) and yu,(p) are the expansions in Taylor's serles at the point p = 1.

But in [1 to 4] the investigations were conducted for the case of suffi~
clently smooth loadings e(p) . As is evident from (1,3), here this condi=-
tion is violated. We will show that the dlscontinuity of w{p) at the point

= & produces 1In the neighborhood of this point the phenomencn of the
interior boundary layer [5]. Two theorems are necessary in what follows.

Theorem 2,1 . The problem (2.2), {2.3) has unigque solutions
(vc, uo) . _The function v, and its filrst derivative are continuous and the
estimate

1 1
% (0)>>P iy S“’dﬂyvz dy >0 2.9)
is valid.

A1l the following derivatives of the function v, , and likewlse the func=
tion y, and its first drivative are piecewlse continuous {they have finite
Jjumps at the -point p = b}

The proof of the theorem almost literally coincides with the proof of
Theorem 2.2 in [7]. It thereby becomes obvious that v, appears as the limit
of the sequence determined by the relations

vn+1=vn"6n (n=1,2,...)
_ 41 {9 _ g2 (p) 1"
vlﬂAl(—za-,f), C’_maus{[————p ] o<p<Y

where &, is the solution of Equation
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1 ) _ 6n] [dsn G ] .
B Ad, + Mén Ay = O’ [—p— p=o<°°’ _d_;_)——-p—én =1 0
1 P ?
= = Avn— 555, M = max p?;x" O<p<t)

Theorem 2,2. Problem (2.4), (2.3) has a unique solution v, ,u,
(8 =1, 2, ...) . The function v, and its first derivative are continuous,
while the higher derlvatives of v, , and also the function y, together
with 1ts derivatlves-are plecewise continuous (they have finite jumps at the
point o = 2) ,

Theorem 2.2 follows as a consequence of theorem 4 from (4] and theorem
2.1 of the present paper.

Applying Theorems 1.1, 2.1 and 2.2, 'we note that the differences

n+2 n
v"=v—233(vs~i—hs), unzu—Zes(us—i—gs)
§=0 $=0

and their derivatives have finite jumps at the point p = » . Indeed, while
the funcbion wu(p) is continuously differentiable at the point p = b , the
functions vy, (p) (8 = 0,1,...) together with their derivatives are disconti-
nuous at this point. PFurther, the dirferences v® and y® in the neighbor-
hood of p = » have the character of a boundary layer. In order to find
this character we introduce the functlons £, and n, which are sought in

the form n n

o =D ek, un = D ein,  (k=1,2) (2.10)
Here =0 1=0
E=E8i M=mnu for p<h, & = &, M =MNa for p>b

We let further, r = |p —¢| and
Vp = Upp + el ... Uk, U = Ugg + WinT -+ ... e (2.11)

which are the corresponding expansions in Taylor's serles at the point r=0.
Now we substitute (2.10) and (2.11) into (1.1), and perform the substitution
r = ¢t and equate to zero the coefficlents of ¢°, e',...e*. We obtain the
system (2.6) to (2.8) and (2.11) for the determination of g,, and n,, with
the substitutions a, by &,,, g, ¥ m,, 8nd vy, (1) by vy(2) . The unknown
boundary condltions at ¢ = 0 for n,, (x = 1, 2) remain unknown. Applying
Theorems 1.1, 2.1 and 2.2 we conclude that the missing boundary condltions
are determined from the requirement that the sum

(g +1) +&(my +m) 4+ ... + & (up + 1a)

must be continuous together with 1ts derivative, Then, if we introduce the
notation (Fl=F@®+0)—F@®—0 (2.12)

the condition of continulty can be written as

w+ 0] = [ @+ )] =0 =0t [243)
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Further, from (2.6) we obtain that g,=g,=0 This corresponds to the
condition that the difference v — v, and 1ts flrst derivative are continuous
at the point p = 3 .

Now from {2.7) for g = O ‘we obtain

d*yy
= Ty (b) nk{) == O, “ko Ei-—-—«'oo == { (k=1,2) (2‘14)

Hence we find that
bh.—
N = C, exp ("“ vy (b) ____s_p) for p<b

) N (2.15)
Mo = C, exp (-—-an 1)) 8—;—9) for p>b

In order to determine the constants ¢, we substitute {2.15) into (2.13)
for & = 0 and we obtain a system of two linear algebralc equations for ¢,
and (¢, . Solving this system we find

G = %([ Vz:(b) [aRGD ' Ca = ”%’([%] V%@‘) [%:32]) (2.16)

The functions n, (g =1, 2, ...) are determined in an analogous form from
the equations of the form {2.14), but being nonhomogeneous, and the functions
g, are determined from Formulas (2.7) by repeated integrations. It is not
difficult to see that the functions g, and n, are functions of the boundary
layer type [5].

3., For the foundations of the asymptotic representations we proceed from
the following Lemma.

Lemma 3.1. Let g,=v —ux and §,=u — 2z, . Then 1in each inter-
val [0, »] and [?%, 1] the estimates

— Yap, 2 = O (pe**1), Ay, + @b, + ¢ (p) = 0 (pe*) (3.1)
are valid.

This lemma follows from Lemma 3 of [4], applied separately in the inter-
vals [0, b] and [d, 1] .

Lemma 3.2 . PFor sufficiently smell (0 < e < eg,) for all
p = [0, 1] the following relations are valid:

e T
1) ¢.>0, 2) min —p——> 57, T=rg1)>0 3.2)
The inequalities {3.2) are easlly obtained as a consequence of Lemma 5 of
(4], Theorem 2,1, and (2.6), (2.9).

Lemma 3.3 . For x, and gz, the following energy estimation 1s
valid:

1 dz? 1 {z o * & (%
(z—9)\(F) e+ + S—; p+e S( )dp+~2—§——~p, dp +
0
1

+ 2 (ardo <con((zel + 2o, T=w(1)>0 (33)
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We begin from considering the interval [0, ] . We substract {3.1) from
(1.1) and multiply the first difference by (v — g,)/p , and the second by
(u ~ 4, )/p , and integrate from O to 1 and sum the results. We perform an
analogous operation in the interval [?, 1] and the result obtained is added
to the previous one., The result of these operations is

1 odr.2 ez 1 odz.2 2 fz 2
V@) de+ o do+ e\ (5) dot 5 do+
0 0

0

0
1
+§£T"_:—_v)zk2dp-— (s -+ %)xk’ (1)—[15,‘% —{—i xﬂii:—— (3.4)
— g2 [zk % 4+ —i— Zkz]b:0< Cekn1 i( Te| + | 2 ) dp

0

Let us show that the nonintegrated terms appearing in the square brackets
are equal to zero. Obviously, that for this to be true it is necessary to
demonstrate that x, and 2z, are contlinuous together with thelr first deriva-
tives at the point p = b ., For the function 2z, (p) this follows from the
smoothness of u(p) by virtue of Theorem 1.1 and the smoothness of qk(p) by
virtue of conditions (2.13). For the function x,(p) this follows from the
smoothness of v{(p) and wv,(p) (s = 0,1,...) by virtue of Theorems 1.1, 2.1
and 2.2 and theg fact that the g, are obtalned by the double integration of
expressions having possible finite j mps at the point o = b . 8o, the
expressions in the square brackets arerequal to zero, and the inequality
(3.3) follows from (3.4) with the aid of Theorem 1.1, Lemma 3.2 and the sim-
ple inequality 1

v (1) = ({ Sode ) <\ (42 ) dp

Theorem 3.1 . Let the function o(p) satisfy condition (1.3) and
for each of the intervals [0, »]) and [», 1] it has n+ 2 continuous deri-
vatives, Then the asymptotic representation (2.1) holds, in which, the esti-
mated remainder allowed is

max, | 2, (p) | < mye" (> 0), maxe |z (P) | < M™% (0 >0)
dx ldz,
max, e K mge™l (n>0), max, \ s L mge™ (1 >2) (3.5)
dx,, . dzzn
maxp_ d_z_ < msgn— /s (n > 1), maxp 'dF < msen_z (n > 3)
O<e<)

4, In the case of other boundary conditions, for instance, free clamping
or simply supporting the principal term of the interlor boundary layer will
be of the form (2.1%) to %2.16). Whereby, the exponential character of the
boundary layer can be explained by the fact that the radial force 1n the
interior points of the membrane is positive (see Lemma 1 of [#]). If, how-
ever, one can construct the followlng approximations of the degenerate prob-
lem analogous to (2.4), (2.5), then the subsequent asymptotic representation
can be constructed with the aid of the equations of the form (2.6) and (2.7).
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5. Exeaemple . Let a circular plate rigidly fixed along the contour
be under the action of a symmetrical loadlng of Intensity P , uniformly
distributed along some circumference of radius b> o0, (The problem is
formulated in [1%, page 168). To further define the problem we let ¥ = 0.5,
o = 0.3, a/h =z B.704, and ¢ = (a/zZn)p .

Then the equilibrium state of the plate 1s described by equations (1.1)
and (1.2) in which

@) =10 for 0Cp<h, @) =¢qb for bSp< 1 (5.1)
Without loss of generallty it can be assumed that
PP =0 for 0<p<Co, ) =1 for bSp<1 (5.2)

since the problem (1.1), (1.2), (5.1) reduces the problem (1.1}, (1.2), (5.2)
with the simple substitutions

v = a (gb)", u = B (gb)", gy? = 2 (b)) (5.3)

It is not difficult. to calculate that the relative thilckness of the plate
¢ = 0.035, and therefore, the solution of the problem can be constructed with
the aid of the asymptotic representation (2.1).

The fundamental difficulty in the construction of the asymptotic represen-
tation 1s the solution of the problem (2.2), (2.3). This problem could be
solved by making use of the algorithms given in Theorem 2.1. But in the case
of the function ¢(p) specified in Formulas (5.2), 1t is more convenlent to
take advantage of the method of power series, For this purpose we eliminate
ue from (2.2], (2.3) and perform the substitutions

Po = PYq, pt=1—=z (5.4)
Making use of (5.2) the results are
— 8p2dip,/dat —1 =10 for 0o <<h? (5.5)
dpo/dzt =10 for B2 <z <1 (5.6)
Poleey =10, [2dpy/dz -+ (4 + ) pol,_y =0 (5.7)

The solution of problem (5.5) to (5.7} in the interval [0, »¥] 1s approxi-
mated by a segment of the power seriles

P,(x)=ay+arz+ ...+ a2 n=23,...) (5.8)

In order to determine the constants g, we substitute (5.8) into (5.5)
and into the second boundary condition of (5.7) and then we equate to zero
the coefficients with various powers of x . The resulting relations are

1+o 1
a4 =—"5 4 2 = — gt (5.9
1
= ———————— t(t — .
4=~ sG=Tye k+n§=s+z (t —1) a0, (5.10)
(>3, ts£s)

From (5.9) and (5.10) we find
1 [Yss-1] bk(s)( 1 )31!

W= 3

Here the b;" are completely determined numbers for for a glven value @,
The table below gives several values of b;’) for ¢ = 0.3, employed in what
follows.

Qg

(s=3,45...) (5.11)
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' =3 | 8=4 l 8=5H l 8=0 ' §=T7 | 8=8 l s=9
—bo® 101 0.66666 | 0.4 0.256 | 0.47066 | 0.11702 | 0.13457 | 0.13516
—5,'® 102 0.52083 | 0.91666 | 1.1333 | 1.2114 | 1.19768 | 1.09453
—b'® 108 0.47742 | 1.4484 | 2.72318 | 3.36034
—bs(® 108 0.56577 | 2.12603

From (5.11) 1t follows that in order to determine the values of a,it 1is

necessary to find a,. We note first that the solution of problem (5.5) to
(5.7) in the interval [, 1] has the form

Po=C{ —2) <zt (5.12)

Here (¢ 1s a certain constant. In order to find the constant (¢ and
together with it g, , we take advantage of Theorem 2.1 concerning the con-
tinuity of the function p, and its first derivative. This, together wilth
(5.8) and (5.12) leads to the following relations at the polnt x = 2*:

n

n
> ab®=C (1 — b, Nisap? V= _¢ (5.13)

=0 =0
Eliminating ¢ we deduce from (5.13)

D ab? Ve 4 s(1 — 82) = 0 (5.14)

8 =0

Applying (5.11), we obtain from (5.14) the following algebraic equation
with respect to 2z = @y :

@ =2"Fez™ . ey 2t =0 (z = ag3) (5.15)

Now 1if in (5.8) we take the value n = 2(% + 1), then the order of Equa-
tion (5.15) will be equal to k

In order to select amongst the roots of (f,(z) the necessary root, we
observe that @,= v,(1) > O (see Theorem 2.1). ~But Equation (5.15) has a
unique positive root. This follows from the fact, that all e. (1=1,2,..,m)
are negative according (5.11), dnd then uniqueness follows from Descartes
theorem concernirg the number of positive roots of a polynomlal. We note
that the positive root of Equation f_(z) = 0 1s convenlently found by
Newton's method, in which the initial approximation 1s taken equal to the
upper bound of the positive roots of the polynomial determined according to

the Maclaurin method, 1i.e.

0 2o =1+ max;|¢| (I<Ii<m)
v Q92
1/C;j Finally, having @, determlned, we
find the a, (s =1, 2, ...) according
/¥ to Formulas (5.9), (5.11), and the con-
/4{ stant ¢ 1s found from any of Formulas
7~ (5.13). With the method described above

the approximate solutlon of the problem
(2.2), (2.3), (5.2) was obtained, For
the approximation of p, the polynomials
P, and p, were constructed (see (5.8)).
With thils 1t is useful to note the satis-
faction of the inequality

/ for the values ¢ = 0.3 and ? = 0.5
?

(Y

max, | P (z) — Py () | < 0.002
Fig.l O<z<Yy) (5.16)
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Now, applying (5.4%) and relations (2.2), we compute the displacements

Dy
us . Phe deflectlon of points of the middle surface of the membrane are °
found from Formula R
ve={uwde @) =0 (5.17)
1
The graphs of the functions wv,, uy and y, are represented, respectively,
w
z i
4 / 4229 T4 V\
7 7
ViR S l i 7
21 ¢
\ g F H
\ Fig. 3
J
Al
a4
\/ . “
2)/ / P i J / /4
‘ ;’ / B ]
7/ -2 24
Fig. 2 Flg. 4

in Flgs., 1, 2 and 3 and marked with number 1. We note that the graph of

u, has a discontinuity at the point p = b , where y,{p) =0 for 0 p<b.
Further, from (2.6), {2.7) for & = O "we find and Ay, and from (2.14)
to (2.16) we determined m, . For the determina%ion of v, and ¥y, from
(2.4) and (2.5) we obtain

u.d

Avy 4 T =0, uy = _.f‘.%l (5.18)
L L ] -
[ . ]M <oo, [ T — = w|e=—0.02302 (5.19)

The solutionr of problem (5.18), (5.19) can be obtained by a method analo-
gous to ithe previous exponentlal series method.

In (5,18) .and (5.19) 1t is necessary to perform the substitutions of the
form (5.4%) and to seek the solution of the problem in the interval [o, »®]
in the form of (5.8), and in the interval [»°, 1] in the form o, (1 - x),

The constant ¢, 1s determined from the condition of the continuity of
v, , together with its derivative, according to Theorem 2.2. The value g,
is found as the solution of the linear algebraic equation. The graphs of
the functions v, -+ &vy, uy-+ &uy, wy + 8w, are also represented in Figs. 1,
2 and 3, and are marked wlth the number 2.

Let us turn to the evaluation of (g,, ;) which 1s the approximate solu-
tion of the problem (1.1), (1.2), (5.25 with the consideration of terms of
order ¢ . For this we find g,, m, for g = 1, from (2.6) and {2.7), and
we substitute these and the previously calculated values of the functions

Uy, Ugs go €bc. into (2.1). The value of the deflection we shall find accord-
ing to Formula {5.17), but with the substitution of U ©Y ¥, . The approx-
imate solution of the problem ls represented in the graphs in Figs.2, 3 and

4 and marked with the number 3. We note that in Fig.2 the quantity_ e,
coingcides with w, + ev, and 1s correct up to values of the order e®; §, 1s
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a cogtinugus function, changing rapidly in the neighborhood of the points
p = an p=1.

Finally, we calculate the bending moment arising in a plate. We have

2w o dw ) Er®
’

M= —b(gw+ 5% D="pi—oy  OSr<ag (20

Passing over to dimensionless variables we obtailn

M du (o
Al°=:'—_E%Z—=: ez(zﬁ;'+‘7;10

In Fig.4, the graphic representation of the function ¥, = ¥,x 10* (marked
with the number 3) 1s given. It is Interesting to note, that in the membrane
the bending moments are equal to zero (in Fig.4 this 1s a straight line coin-
clding with the absclssa axis and marked with the number 1), and the extreme
values of ¥, are found at polnts p = p, and p =1 .

The author thanks, I.I. Vorovich and V.I. Iudovich for the useful advice
in carrying out thils paver.
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